Crossed Product Orders and Non-commutative Arithmetic

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Commutative Infinitary Peano Arithmetic

Does there exist any sequent calculus such that it is a subclassical logic and it becomes classical logic when the exchange rules are added? The first contribution of this paper is answering this question for infinitary Peano arithmetic. This paper defines infinitary Peano arithmetic with non-commutative sequents, called non-commutative infinitary Peano arithmetic, so that the system becomes eq...

متن کامل

A Poset Classifying Non-commutative Term Orders

We study a poset N on the free monoid X∗ on a countable alphabet X. This poset is determined by the fact that its total extensions are precisely the standard term orders on X ∗. We also investigate the poset classifying degree-compatible standard term orders, and the poset classifying sorted term orders. For the latter poset, we give a Galois coconnection with the Young lattice.

متن کامل

Maximal Crossed Product Orders over Discrete Valuation Rings

The problem of determining when a (classical) crossed product T = S ∗ G of a finite group G over a discrete valuation ring S is a maximal order, was answered in the 1960’s for the case where S is tamely ramified over the subring of invariants S. The answer was given in terms of the conductor subgroup (with respect to f) of the inertia. In this paper we solve this problem in general when S/S is ...

متن کامل

Crossed Squares and 2-crossed Modules of Commutative Algebras

In this paper, we construct a neat description of the passage from crossed squares of commutative algebras to 2-crossed modules analogous to that given by Conduché in the group case. We also give an analogue, for commutative algebra, of T.Porter’s [13] simplicial groups to n-cubes of groups which implies an inverse functor to Conduché’s one.

متن کامل

Non - Commutative Arithmetic Circuits : DepthReduction and Size Lower

We investigate the phenomenon of depth-reduction in commutative and non-commutative arithmetic circuits. We prove that in the commutative setting, uniform semi-unbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree; earlier proofs did not work in the uniform setting. This also provides a uni ed proof of the circuit characterization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1994

ISSN: 0022-314X

DOI: 10.1006/jnth.1994.1015