Crossed Product Orders and Non-commutative Arithmetic
نویسندگان
چکیده
منابع مشابه
Non-Commutative Infinitary Peano Arithmetic
Does there exist any sequent calculus such that it is a subclassical logic and it becomes classical logic when the exchange rules are added? The first contribution of this paper is answering this question for infinitary Peano arithmetic. This paper defines infinitary Peano arithmetic with non-commutative sequents, called non-commutative infinitary Peano arithmetic, so that the system becomes eq...
متن کاملA Poset Classifying Non-commutative Term Orders
We study a poset N on the free monoid X∗ on a countable alphabet X. This poset is determined by the fact that its total extensions are precisely the standard term orders on X ∗. We also investigate the poset classifying degree-compatible standard term orders, and the poset classifying sorted term orders. For the latter poset, we give a Galois coconnection with the Young lattice.
متن کاملMaximal Crossed Product Orders over Discrete Valuation Rings
The problem of determining when a (classical) crossed product T = S ∗ G of a finite group G over a discrete valuation ring S is a maximal order, was answered in the 1960’s for the case where S is tamely ramified over the subring of invariants S. The answer was given in terms of the conductor subgroup (with respect to f) of the inertia. In this paper we solve this problem in general when S/S is ...
متن کاملCrossed Squares and 2-crossed Modules of Commutative Algebras
In this paper, we construct a neat description of the passage from crossed squares of commutative algebras to 2-crossed modules analogous to that given by Conduché in the group case. We also give an analogue, for commutative algebra, of T.Porter’s [13] simplicial groups to n-cubes of groups which implies an inverse functor to Conduché’s one.
متن کاملNon - Commutative Arithmetic Circuits : DepthReduction and Size Lower
We investigate the phenomenon of depth-reduction in commutative and non-commutative arithmetic circuits. We prove that in the commutative setting, uniform semi-unbounded arithmetic circuits of logarithmic depth are as powerful as uniform arithmetic circuits of polynomial degree; earlier proofs did not work in the uniform setting. This also provides a uni ed proof of the circuit characterization...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1994
ISSN: 0022-314X
DOI: 10.1006/jnth.1994.1015